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Thus the principal directions of Type IV are indeterminate, and (8) define
an invariant function of position

0 = gslhl gS2i9 gS3t3ss G1lf,cp dxs dxt = k2
ds ds x1

Substituting this value for 0 in (1), we obtain, after reduction, the follow-
ing equations for principal directions-

odxl = 9 k(15 --14) dxl, Odx2 = 18 8 (1--) dx,

odx3 = 18 k (1 -) dx3 OdX4 = 9 9-dx4

These equations determine the following directions:-
(i) the parametric lines of xi, (dx2 = dx3 = dx4 = 0);

(ii) any direction making dxl = dx4 = 0;
(iii) the parametric lines of x4, (dxl = dx2 = dx3 = 0).

It might be said that these principal directions illustrate both the radial
and the stationary characters of the field.
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1. In a former-paper (these PROCEZDINGS, Feb. 1922) Professor Veblen
and the writer considered the geometry of a general space from the point of
view of the paths in such a space-the paths being a generalization of
straight lines in euclidean space. From this point of view it is natural to
think of the tangents to a path as being parallel to one another. In this
way our ideas may be coordinated with those of Weyl and Eddington who
have considered parallelism to be fundamental rather than the paths which
we so consider. It is the purpose of this note to determine the geometries
which possess one or more fields of parallel vectors, which accordingly
define a significant direction, or directions, at each point of the space.

2. The equations of the paths are taken in the form
d2x + dxa dx'5(.-+rl,-- =0,(21
dS2 d.s ds 21

where xi (i 1, ... n) are the co6rdinates of a point of a path expressed
as functions of a parameter s; ri , are functions of the x's such that riap =
l a.
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The components dxt/ds of the vector tangent to a path being contra-
variant we put dx&/ds = A'. In the former paper we observed that the
theory of covariant differentiation can be generalized to the geometry of
paths by replacing the Christoffel symbols { ,k } by rIk. Thus the quanti-
ties

6WAs ai r'AAa (2.2)

are the covariant derivatives of A'; they are the components of a mixed
tensor of the second order. Thus Aj dx' expresses in invariant form the
first variation of the components of A' as the x's vary. Hence if we write
(2.1) in the form

A.1 dxl/ds = 0, (2.3)

we see that the first variation of the ~components of the tangent vector to
a path is equal to zero. In this sense we speak of the tangents to a path as
parallel.
Suppose now that A' are the components of any contravariant vector

whatever, and consider the vectors at points of any curve C not necessarily
a path. The components A' and co6rdinates x' along C are expressible
in terms of a parameter s,, and dxids are the components of the tangent
to C. If these functions are such that equations (2.3) are satisfied, we say
that the vectors A' are parallel to one another with respect to the curve. In
particular the tangents to a path are parallel with respect to it. Some
time ago Professor Veblen, in discussing the covariant derivative of a
tensor, pointed out that it should be interpreted as the system of turning
components of the given tensor with respect to the given direction. In
this sense (2.3) expresses the fact that-the turning components of the
vector along the curve are zero.

In order that our definition may be such that if A' are the components
of parallel vectors with respect to a curve so also are sp A', where so is a
scalar, we say that the vectors of components A' are parallel with respect
to a curve whose tangents have the components dx'/ds, provided that a
scalar function so exists such that

(bAS + r$,,A_of-- t. (2.4)
\6x' 6~~~x' ds

3. Equation (2.4) is satisfied independently of the curve, if

6,9 + rv -A""' -log (p A' = , (3.1)
ax-l aJ a

that is

i lo19r A = 0. (3.2)
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Consequently whenever there exists a field of vectors satisfying (3.1), all
the vectors are parallel to one another for any curve, and thus there is a
significant direction at each point of the space.

For the second covariant derivatives of any contravariant vector A' we
have the identity

Aik - = -Aa Bsjkg (3.3)
where

B k = aT,k _ 8 + I,, ri, - re, rsk, (3.4)
bx bxk

that is the B's are the components of the curvature tensor, as defined in the
former paper. From (3.3) it follows that the conditions of integrability of
(3. 1) are

Aa Bajk = 0. (3.5)
From this equation it -follows that a necessary and sufficient condition

that (3.1) be completely integrable, that is that there exists a field of vec-
tors parallel to any given vector is Bi k = 0. From the results of
the former paper it follows that in this case the space is euclidean.

If the space is not euclidean, a necessary condition that the A's given by
(3.5) shall satisfy (3.2) is

Aa Bajkl = 0, (3.6)

where B jkl is the covariant derivative of B Jk.
Suppose now that the rank of the matrix of equations (3.5) is such that

these equations admit a set of solutions A' determined to within a scalar
factor, and that these functions satisfy (3.6). Differentiating (3.5) covari-
antly with respect to x1 and taking account of (3.6), we have that the
functiotis A' must satisfy (3.5). In consequence of the above assumptions,
it follows that

A = Aa(P (3.7)

where e is a covariant vector. Substituting in (3.3) and making use of
(3.5), we find that (pi is a gradient, and consequently (3.7) is of the form
(3.2).
The case when equations (3.5) admit m ( <n) sets of solutions, in terms

of which any set of solutions is linearly expressible can be handled by a
method similar to that used in §7 of the former paper. In this case any
vector at a point P in the m-fold bundle of vectors determined by the m
vectors at P is parallel to a vector in the corresponding bundle at any
other point of the space.

4. In the preceding section we have given the conditions for one or
more fields of vectors in invariantive form. Now we shall show how all
such fields may be obtained by making a suitable choice of coordinates.
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Suppose we have m (<n) fields of parallel vectors of components A(p),
where i = 1, - - - n; p = 1, --- m. If B'p, denote the components in another
set of variables 9, we have

Bsp) = Aap) (4.1)

If we show that there exist n independent functions y9 such that

Xp (y) A') bx' 0 (itp) (4.2)

then in the new set of coordinates all the components of the vectors will be
zero except those of the form BP(.

If we form the Poisson operator for (4.2), namely (XpXq - XqXp) (yt),
we have in consequence of (3.1)

i 109(POq i a blogiO(XpXq- XqXXp)()=Ap)AOgpq yj - A' _

where spp (p = 1,. . . m) are the functions so appearing in equations of the
form (3.1). Hence (4.2) is a complete system.

If we let p take all the values from 1 to m, there are in accordance with
the theory of complete systems n - m independent solutions, which we
take for ym+l, ....,y. If we exclude from the system (4.2) the equa-
tion X, = 0 where r has a value from 1 to m, we have a complete system
of m - 1 equations, of which n - m independent solutions are y'+I) ...

.. . yn, and the other we take for yr. Hence if there exist m fields of par-
allel vectors, the coordinates can be chosen so that all the components are
zero except those of theform AP) (p = 1,. . ., m), and consequently our
problem reduces to the determination of geometries for which equations (3.1)
admit solutions of this kind.

5. In order that equations (3.1) admit solutions All) * O, A',) = 0
(i * 1), we must have

r' = o, rij log^, (t2-*n (5.1)i b1=,...n\
where 4P is an arbitrary function of the x's, and then A'1) = s Con-
sequently if we choose the r's with one or two subscripts 1 as given by (5.1),
and take the others as arbitrary functions of the x's, we have the most
general geometry with one field of parallel contravariant vectors.

In like manner any geometry with m fields of parallel contravariant vec-
tors can be obtained by choosing

rpj =0o rp =- ---log 4 tP p (5.2)

where iIi, is an arbitrary function of xp, x"M+,..., xs.
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6. Suppose now that the geometry is Riemannian, the fundamental
form being

dS2 = gjj dx' dxj (gij = gji) (6.1)
Since

r =2gia(cf + bgalj _9i)
2 '\aXj bX1 5_Xa)

equations (5.1) are in this case equivalent to

6gla + bgaj _agU= 2gja log (6.2)
bx bx' axa-

for c, j = 1, .. n. When we take a = j = 1, we find gi,= 42A(x2,. .xI).
When we take j = 1, az * 1, we find

a {glaA =; aA +2a (6.3)axl b+xa 2axa
Consequently gla,. are given by quadratures, and likewise ga (a * 1,
j * 1)from (6.2).

In particular if ^, = const., by interchanging a and j in (6.2), we find
that bg,,j/lx1 = 0 for all values of a and j. Moreover (6.2) becomes

-gl= aglj (6.4)
aXJ axa

As a first consequence of this equation we have that gil is a constant which
may be taken equal to unity. Again (6.4) are the necessary and sufficient
conditions that

glc, dxa= dxl + d(p (x2, x)

-If then xl is replaced by x'- p (x2, .. xI), the form (6.1) becomes

ds2 - dx2 + gjj dx dx' (i,j = 2, .. n), (6.5)

where gij are independent of xl. A space with linear element (6.5) is the
-most general which admits a translation into itself. (Bianchi, Teoria dei
gruppi continui, Pisa, 1918, p. 500.) The space-time manifold of four
dimensions used by Einstein in his cosmological considerations is of the
type (6.5), xl being the coordinate of time.

In the case of m( <n) fields of parallel vectors for which ri, = O, (p =1,
m; i, j = 1, .., n), these equations are equivalent to

agji - 0 agpi - (6.6)

From the first of these it follows that all of the functions gij are indepen-
-dent of xl, x" . From the second of (6.6) we find that gpq (pq = 1,
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* . m) are constants. Then as in the above case we show that the linear-
element can be put in the form

ds2 = (dX')2 + .. + (dXm)! + gij dxi dX' (i, = m+, .. n)
where gij are independent of xl, ...., xm. When m = n-1, equation
(6.7) is reducible to the euclidean form.

7. If A' are the contravariant components of a vector in a Rieman--
nian geometry, its covariant components Ai, are given by

A' = gia Aa. (7.1)
When this expression is substituted in (3.1), we obtain

aA_ri A- A,A; lo 0. (7.2)

When we are dealing with a non-Riemannian geometry we say that a field.
of parallel covariant vectors is one which satisfies (7.2).
The conditions of integrability of (7.2) are

Aa BMk = 0. (7.3)
In order that the A's given by (7.3) shall satisfy (7.2) it is necessary that-

Aa Btikl = 0. (7.4)
As in the case of contravariant vectors, it can be shown that when there

are m (< n) independent sets of solutions of (7.3) which satisfy (7.4) there
exist m fields of parallel, covariant vectors.
The methods of §§ 4, 5 cannot be applied to the case of covariant fields.

ON THE INFLUENCE OF DENSITY OF POPULATION UPON THE
RATE OF REPRODUCTION IN DROSOPHILA
By RAYMOND PEARL AND SYIviA L. PARKER

ScHooL or HYGIENE AND PuBLic HEALTH, JOHNS HoPmrs UNIVERSITY
Communicated, May 5, 1922

It has long been known that degree of crowding of organisms in a given:
space, or the density of the population, has an influence upon various.
vital processes of the individuals composing the population. In the
matter of growth Semper2 and before him Jabez Hogg3 showed that volume
of water apart from food and other conditions has an influence upon the
rate. This subject has again been studied recently by Bilski4. Farr5-
showed that there is in man a definite relation between density of popu--
lation and the death rate. This old work of Farr's has recently been gone-
over carefully and confirmed by Brownlee.6 Drzwina and Bohn7 show
that a particular concentration of a toxic substance, just lethal for a single'
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